Targeted systemic radiotherapy with scVEGF/177Lu leads to sustained disruption of the tumor vasculature and intratumoral apoptosis.
نویسندگان
چکیده
UNLABELLED Tumor vessels abundantly express receptors for vascular endothelial growth factor (VEGF), despite treatment with conventional or antiangiogenic drugs. We wished to determine whether the high levels of VEGF receptor (VEGFR) within the tumor vasculature could be leveraged for intracellular delivery of therapeutically significant doses of scVEGF/(177)Lu, a novel radiopharmaceutical based on a recombinant single-chain (sc) derivative of VEGF, in orthotopic breast cancer models. METHODS scVEGF-PEG (polyethylene gycol)-DOTA conjugates containing 2.0-, 3.4-, or 5.0-kDa PEG linkers site-specifically conjugated to a cysteine-containing tag (Cys-tag) in scVEGF were radiolabeled with (177)Lu (scVEGF/(177)Lu) for in vivo studies. Human MDA231luc and mouse 4T1luc cell lines were injected orthotopically to establish breast carcinoma tumors in immunodeficient and immunocompetent hosts, respectively. The effects of scVEGF/(177)Lu were defined by analysis of changes in tumor growth and immunohistochemical staining for the endothelial markers CD31 and VEGFR-2 and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) staining for intratumoral apoptosis. RESULTS Biodistribution assays and dosimetric calculations established that scVEGF/(177)Lu with a 3.4-kDa PEG linker delivered the highest dose of radiation to tumors (69.9 cGy/MBq/g of tissue) and the lowest dose to the kidneys (33.3 cGy/MBq/organ). Total doses below 40 MBq/mouse of scVEGF/(177)Lu did not affect renal function, and 3 divided doses of 6.3 MBq/mouse or a bolus dose of 18.9 MBq/mouse induced only transient lymphopenia and weight loss (<10% baseline weight). In mice with orthotopic mammary breast carcinoma, intravenous injections of well-tolerated bolus and fractionated doses of scVEGF/(177)Lu in the range from 6.3 to 18.9 MBq/mouse (25-76 MBq/m(2)) resulted in dose-dependent tumor growth inhibition. Immunohistochemical analysis of tumors at 4-5 wk after single injections of scVEGF/(177)Lu indicated dose-dependent regression of tumor vasculature and widespread intratumoral apoptosis. A single dose of 7.4 MBq/mouse of scVEGF/(177)Lu given before a course of bevacizumab or sunitinib treatment enhanced the antiangiogenic effects of both drugs. CONCLUSION Selective targeting of VEGFR in tumor vasculature with well-tolerated doses of scVEGF/(177)Lu is effective in orthotopic breast cancer models. As high levels of VEGFR expression in the tumor vasculature are a common feature in a variety of cancers, targeting tumor angiogenesis with scVEGF/(177)Lu warrants further exploration.
منابع مشابه
Targeted scVEGF/177Lu radiopharmaceutical inhibits growth of metastases and can be effectively combined with chemotherapy
BACKGROUND scVEGF/(177)Lu is a novel radiopharmaceutical targeted by recombinant single-chain (sc) derivative of vascular endothelial growth factor (VEGF) that binds to and is internalized by vascular endothelial growth factor receptors (VEGFR). scVEGF/(177)Lu potential as adjuvant and neoadjuvant anti-angiogenic therapy was assessed in metastatic and orthotopic mouse models of triple-negative ...
متن کاملSystemic Targeted Alpha Radiotherapy for Cancer
Background: The fundamental principles of internal targeted alpha therapy for cancer were established many decades ago.The high linear energy transfer (LET) of alpha radiation to the targeted cancer cellscauses double strand breaks in DNA. At the same time, the short range radiation spares adjacent normal tissues. This targeted approach complements conventional external beam radiotherapy and ch...
متن کاملTNF and manipulation of the tumor cell-stromal interface: "ways to make chemotherapy effective".
Growth of solid tumors depends largely on the development of a functional vasculature, which has been the focus in anti-tumor therapy since Folkman in 1971 proposed that prohibiting the formation of new vessels could inhibit tumor growth. The recognition of the tumor vascular bed as an important target led to the development of 3 vascular-targeted strategies. I) The anti-angiogenesis strategy t...
متن کاملSystemic overexpression of angiopoietin-2 promotes tumor microvessel regression and inhibits angiogenesis and tumor growth.
Angiopoietin-2 (Ang-2) is a conditional antagonist and agonist for the endothelium-specific Tie-2 receptor. Although endogenous Ang-2 cooperates with vascular endothelial growth factor (VEGF) to protect tumor endothelial cells, the effect on tumor vasculature of high levels of exogenous Ang-2 with different levels of VEGF has not been studied in detail. Here, we report that systemic overexpress...
متن کاملPreclinical study of a new 177Lu-labeled somatostatin receptor antagonist in HT-29 human colorectal cancer cells
Objective(s): Somatostatin receptor-positive neuroendocrine tumors have been targeted using various peptide analogs radiolabeled with therapeutic radionuclides for years. The better biomedical properties of radioantagonists as higher tumor uptake make these radioligands more attractive than agonists for somatostatin receptor-targeted radionuclide therapy. In this study...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of nuclear medicine : official publication, Society of Nuclear Medicine
دوره 52 10 شماره
صفحات -
تاریخ انتشار 2011